Er Manish Bhadoria's

Address:

Nimbalkar's Goth - 2, Kampoo, Lashkar, Gwalior, MP **Contact:**

Strong Foundation for a bright future

Interact

Mathematics Practice Test Paper No. 1

8989-700-940, 9479-715-818

Final Exam 2023

Class 9th

Time: 3 h

						Marks: 80
Section	Α	В	С	D	Ε	
Q. No.	1 – 20	21 – 25	26 – 31	32 - 35	36 - 38	
Marks	1	2	3	5	4	
Туре	MCQ	S. A. Type 1	S. A. Type 2	L. A. Type	Case Study Based]

Section A

1. Between two rational numbers

(a) there is no rational number

- (b) there is exactly one rational number
- (c) there are infinitely many rational numbers
- (d) there are only rational numbers and no irrational numbers
- **2.** A rational number between $\sqrt{2}$ and $\sqrt{3}$ is:

(a)
$$\frac{\sqrt{2} + \sqrt{3}}{2}$$
 (b) $\frac{\sqrt{2} \cdot \sqrt{3}}{2}$ (c) 1.5 (d) 1.8

- 3. Value of $\sqrt{3^{-2}}$ is: (a) $\frac{1}{9}$ (b) 9
- 4. In the given figure, AB is a diameter of the circle. CD||AB and $\angle BAD = 40^\circ$, then $\angle ACD$ is (a) 40° (d) 140°

- 5. OM is perpendicular to the chord AB of circle with centre O. If OA = 13 cm, AB = 24 cm then OM equals: (d) √4.7 cm (a) 3 cm (b) 4 cm (c) 5 cm
- 6. In figure, $\angle POR = 3x$ and $\angle QOR = 2x 10$. The value of x for which POQ is a straight line is: (a) 38° (b) 30° (c) 0° (d) 74°

Fin	al Exam 2023			Class 9 th Maths Practice Test Pa	aper 1	
7.	The area of a triangle	e whose sides are 13 c	m, 14 cm and 15 cm is	5:		
	(a) 42 cm ²	(b) 86 cm ²	(c) 84 cm ²	(d) 100 cm ²		
8.	The range of the data	a 25.7, 16.3, 2.8, 21.7, 2				
	(a) 22	(b) 22.9	(c) 21.7	(d) 20.5		
9.	If $x^3 + 6x^2 + 4x + k$ is e	exactly divisible by x +	2, then k is equal to			
	(a) –6	(b) –7	(c) –8	(d) –10		
10.	One of the zeroes of	the polynomial $2x^2 + 7$	$^{7}x - 4$ is			
	(a) 2	(b) ½	$(c) - \frac{1}{2}$	((d) - 2)		
11.	Point $(0, -7)$ lies					
	(a) on the x –axis	(b) in the second q	uadrant			
10	(c) on the y-axis	(d) in the fourth qu	ladrant			
12.	Ine equation of x-ax $(a) = 0$	(15) = 0	(a) + a = 0	(1)		
12	(a) $x = 0$ The perimeter of an	(b) $y = 0$	(c) x + y = 0	$(\mathbf{d}) \mathbf{x} = \mathbf{y}$		
13.	$()$ 10 $\sqrt{2}$		1100 III. The area is	(1) 100 /2 2		
11	(a) $10\sqrt{3}$ m ²	(b) $15\sqrt{3} \text{ m}^2$	(c) $20\sqrt{3}$ m ²	(a) $100\sqrt{3}$ m ²		
14.	Degree of the zero p	olynomial is		(d) Not defined		
15	(a) \cup	$(D) I \qquad (C) A$	ny natural number $D = 25^{\circ}$ and (COD)	(a) Not defined		
15.	In Fig., If AD $ $ CD $= 60^{\circ}$ then (OPS) is a	EF, PQ KS, ZKQ	$D = 25^{\circ}$ and $2CQP$	s		
	= 60, then ZQK5 is e	(h) 135°		A R	B	
	(a) 0.00	(d) 110°		· /	→ →	
	(c) 145	(u) 110	(n)	C 0 259	n	
				\leftarrow	\rightarrow	
				60°		
				←	→ →	
				E JP	F	
16	In fig. if $(B \land C = 60)$	$^{\circ}$ (ACB = 20° then (А		
10.	$(a) 90^{\circ}$ (b) 80^{\circ}	$(c) 100^{\circ}$ (d)	ADC 15.			
	(a) 50 (b) 50	(c) 100	00		\backslash	
					$\langle \rangle$	
				B	ДK	
				20°	/	
				С		
17.	If $a + b + c = 0$, then a	$a^3 + b^3 + c^3$ is equal to				
	(a) 0 (b)	abc (c) 3a	abc (d) 2a	lbc		
18.	The things which are	e double of the same the	hing are			
	(a) equal (b)	unequal (c) halves	of the same thing	(d) double of the same thi	ng	
19.	Axioms are assumed					
	(a) universal truths in	n all branches of math	lematics			
	(b) universal truths s	specific to geometry				
	(c) theorems					
2 0	(u) definitions	a of a cono whose rad	is is $r/2$ and clant be	ight 21 is:		
20.	The total sufface are		ius is 1/2 and Statit he	15111 <i>21</i> 15.		
	(a) $2\pi r (l + r)$	(b) $\pi r \left l + \frac{r}{4} \right $	(c) $\pi r (l + r)$	(d) 2 <i>πrl</i>		
		(4)				

Section B

- **21.** Represent $\sqrt{7.3}$ on the number line.
- **22.** Find the remainder when (x 3) divides the polynomial $x^2 \sqrt{2}x + 3\sqrt{2}$.
- **23.** Find the value of $x^3 + y^3 + 15xy 125$ when x + y = 5.
- **24.** Find any three solutions for the equations 15x 2y = 7.
- **25.** Factorize: $a^3 \frac{1}{a^3} 3a + \frac{3}{a}$.

Section C

- **26.** If $\frac{3+\sqrt{8}}{3-\sqrt{8}} + \frac{3-\sqrt{8}}{3+\sqrt{8}} = a+b\sqrt{2}$, find *a* and *b*.
- 27. It costs ₹ 2200 to paint the inner curved surface of a cylindrical vessel 10 m deep. If the cost of painting at the rate of ₹ 20/m², find the radius of the base.
- **28.** In figure given, $QT \perp PR$, $\angle TQR = 60^{\circ}$ and $\angle SPR = 40^{\circ}$. Find the value of *x* and *y*.

29. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$. Show that $\triangle DAP \cong \triangle EBP$.

30. ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$ (see Fig. given). Prove that: (i) $\triangle ABD \cong \triangle BAC$ (ii) BD = AC (iii) $\angle ABD = \angle BAC$.

31. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Section D

32. (a) Expand $\left(\frac{1}{4}a - \frac{1}{2}b + 1\right)^2$

(b) Evaluate (102)³, using suitable identity.

33. Line *l* is the bisector of an angle $\angle A$ and B is any point on *l*. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see Fig.). Show that:

(i) $\triangle APB \cong \triangle AQB$

(ii) BP = BQ or B is equidistant from the arms of $\angle A$.

- **34.** A heap of wheat is in the form of a cone whose diameter is 10.5 m and height is 3 m. Find its volume. The heap is to be covered by canvas to protect it from rain. Find the area of the canvas required.
- **35.** The number of patients attending a cardiac clinic in a hospital in a month is given. Draw the occurrence of diseases by plotting a histogram.

	0	0				
Number of Patients	0-5	5 – 10	10 – 15	15 – 20	20 - 25	25 - 30
Diabetic Clinic	3	5	10	8	3	1

Section E

36. A floral design on a floor is made up of 16 tiles which are triangular, the sides of the triangular tiles are 9 cm, 28 cm and 35 cm. Find the cost of polishing the tiles at the rate of 50 p per cm².

37. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord.

Û

Р

D

38. ABCD is a parallelogram (see figure). On diagonal BD are points P and Q such that DP = BQ. Show that APCQ is a parallelogram.

The journey of a thousand miles begins with one step.

- Lao Tzu

С

Answers and solutions to this paper available **FREE** on **Google Playstore**.

Words of Wisdom

To download free android app click here:

https://play.google.com/store/apps/details?id=co.rogers.kfiox

More sample papers with solutions, video lectures and other material included on app.